支座通常在工厂组装好后整件运输到工地,为保证运输过程中支座的完整性和整体性,应使用临时定位装置将支座各部件可靠连接。
模型简化原则:在进行结构分析建模时,考虑到隔震支座的抗弯、抗扭刚度远小于混凝土构件,为真实模拟其受力特性,通常将模型底层柱下端设置为铰接约束,以反映其弱弯矩传递能力。
建筑隔震摩擦摆支座源头工厂
安装验收:支座安装前需检查垫石标高、中心位置及水平度,临时定位装置应在正式工作前拆除。
板式支座应用范围:目前主要普遍应用于跨径在6米至20米之间的中小跨径钢筋混凝土、预应力混凝土及钢桥。其最大设计支承反力已能达到相当高的水平。
摩擦摆隔震支座FPSII-9000-350-3.81
隔震支座体系除了比传统抗震体系具有明显降低地震反应、确保安全外,还可降低房屋造价,根据施上经验。造价的节约、浪费与建筑结构的整体设计和抗震设防等级有着直接的关系。一般建造于抗震设防高烈度区的隔震房屋,采用框架结构,层数较多。且设计技术水平、施工技术水平跟得上,隔震层设计合理,工程造价就会低一些,经济效果明显,对于砌体结构的隔震房屋,如若能按照“设计规范”的规定,增加房屋层。
安全储备充足:水平变形能力达 250% 时仍不影响正常使用,同时具备足够竖向承载力,能稳定支撑建筑物主体;且可精准控制传递至结构的地震力,解决了传统抗震设计中荷载难以准确确定的难题。
摩擦摆式隔震支座源头工厂
网架支座选用:合理的支座结构形式与技术指标对节点安全至关重要,正确选用有利于提升工程质量并推动设计发展。
周期与竖向隔震设计要求隔震系统周期需符合设计规范,例如某隔震建筑针对 1080KN?M 屈服后刚度及 14200KN 重力荷载,理论周期应为 27S,但 1999 年 AASHTO 规范为限制隔震系统过大位移,将该周期上限设定为 6S,工程设计需严格遵循规范要求。竖向隔震(振)设计中,隔震(振)装置需具备合适的竖向刚度,使隔震(振)体系的竖向自振周期远离上部结构自振周期及场地(或振源)特征周期(或激振周期),从而有效隔离竖向震(振)动,降低上部结构震(振)动反应。
隔震支座FPS-Ⅱ-2000-500-3.8生产厂家
竖向刚度:该支座的竖向压缩刚度较高,但拉伸刚度较低,约为压缩刚度的1/7~1/10。
墩高:墩高对摩擦摆支座的墩底弯矩减隔震效果有较大影响,较低墩高的墩底弯矩减震率可能更好,同时墩高对支座的最大水平滑动位移也有一定影响,墩高较低时最大水平滑动位移相对较小。

施工安装:这是支座应用成功的关键环节,安装时需严格控制精度 —— 水平精度倾斜度需达到 1/500,与设计标高高度差 ±3mm,位置精度 X-Y 方向 ±5mm;架设下预埋板周边钢筋时,需避开预埋锚筋及预埋套筒,避免影响支座受力。
隔震支座的核心设计特点是 “水平柔性、竖向承重”,其竖向刚度显著低于混凝土构件,具体对比需修正单位偏差并补充计算依据:
