板式支座应用范围:目前主要普遍应用于跨径在6米至20米之间的中小跨径钢筋混凝土、预应力混凝土及钢桥。其最大设计支承反力已能达到相当高的水平。
减震:地震力是建筑结构中最大的外部力之一,而摩擦摆支座可以减少地震对建筑结构的影响,保护建筑结构不受到严重损害。通过摩擦材料的摩擦力作用,将结构的位移转化为能够消耗地震能量的热量,从而达到减震的效果。
摩擦摆减隔震球形支座
四氟板式橡胶支座的滑动性能依赖于聚四氟乙烯板(PTFE)与不锈钢板的配合,其摩阻系数需通过润滑措施精准控制:常温型活动支座(适用于环境温度 0℃以上):加入 5201 硅脂润滑后,设计摩阻系数≤0.03,确保支座在温度伸缩、荷载变化时能顺畅滑动;耐寒型活动支座(适用于低温环境):同样采用 5201 硅脂润滑,设计摩阻系数≤0.06,需通过材料改性保证低温下硅脂的润滑效果,避免摩擦阻力骤增。
动力学分析:在深入研究支座的动力学特性时,例如通过功率流等方法分析其能量传递,可以清晰地观察到支座参数对结构响应的影响。为聚焦核心问题,相关研究常选取典型位置(如固定墩和活动墩)作为分析对象,深入探究流入结构的功率流如何随支座水平刚度的变化而变化,从而为支座参数的优化选择提供依据。
摩擦摆隔震支座FPSII-4000-300-3.48
在隔震支座设计阶段,应重视控制相邻支座的竖向刚度差异与荷载分布差异,通过简化计算手段控制支座间的竖向变形差值,以降低结构局部倾覆风险。
转角监测:及时发现和处理因设计及安装不当造成的支座转角超限问题
摩擦摆隔震支座FPSII-6000-300-3.48
可靠性高:经过严格的试验验证和工程实践,摩擦摆隔震支座具有较高的可靠性和耐久性。
隔震系统设计关键技术:隔震层位置选择隔震层位置选择是隔震工程设计的首要决策,结构专业可在建筑方案阶段参与并发挥重要作用。该选择不仅影响结构自身设计,还对建筑、设备等相关专业产生深远影响,直接关联工程造价与技术难度,需综合多方面因素全面论证后确定。
摩擦摆减隔震支座厂家
若保持层数不变,根据大量的工程实践数据统计,隔震建筑的单方造价通常会增加 30 - 50 元 /㎡。然而,这一造价的增加并非没有回报,采用隔震技术后,上部结构的配筋率可降低 15% - 20%。以某砌体结构的教学楼为例,在采用隔震技术前,为满足抗震要求,梁、柱等构件的配筋量较大;采用隔震技术后,通过隔震层对地震能量的有效阻隔,上部结构所受地震力明显减小,经过结构计算和优化设计,梁的配筋率从原来的 1.8% 降低至 1.5%,柱的配筋率从 2.2% 降低至 1.8%,大大节省了钢筋用量,从长期来看,降低了建筑的维护成本和潜在的修复成本 。
支座安装标准流程:安装时机:待地脚螺栓预埋砂浆(强度≥C40)固化、找平层环氧砂浆初凝前进行支座安装;高程控制:找平层需略高于设计高程(预留 5mm-10mm 压缩量),支座就位后利用结构自重或辅助加压调至设计高程;精度检验:安装后立即检测两项指标:高程偏差:≤±3mm(单支座),相邻支座高程差≤5mm;四角高差:≤2mm(矩形支座),确保支座受力均匀。

保护内部设施:减少地震对建筑内部装修和设备的破坏。
根据工程技术调查统计数据,目前在用桥梁中有相当比例的支座存在不同程度的病害问题。调查显示,约有20%的桥梁支座病害状况较为严重,急需进行更换或调整处理,否则将直接影响桥梁整体结构的安全性和耐久性。
