混凝土支座:通常与墩台整体浇筑,构造简单,但转动和位移适应能力较差。
曲率半径:曲率半径过大可能导致桥板大幅度晃动,增加落梁的概率;曲率半径过小则会使减震球摆的晃动太小,不利于消耗地震能量。在高速铁路桥梁摩擦摆支座隔震设计中,应当考虑曲率半径对梁体位移、支座残余位移和桥墩内力的影响,再因地制宜选择合适的曲率半径。
摩擦摆隔震支座FPSII-5000-400-4.11生产厂家
在建筑领域,摩擦摆支座已被广泛应用于多层和高层建筑的隔震设计中,以提高建筑物的抗震能力。随着隔震技术的不断发展和创新,摩擦摆支座的研究与应用将继续深入,以满足日益增长的抗震需求。
支座使用寿命与维护需求:支座设计使用寿命通常为 10~20 年,特殊工况下使用寿命可能进一步缩短,而建筑主体结构寿命远长于支座,因此支座定期更换是保障工程长期抗震性能的关键。支承垫石的设置可为支座更换提供操作空间 —— 便于千斤顶放置与支座拆装,是实现支座顺利更换的重要前提。
摩擦摆隔震支座FPSII-6000-400-4.11厂家
由于层高较高,一般从使用方便考虑均设置高下支墩的隔震方式,笔者还没有见过高上支墩的工程。这种情况的案例比较多,典型的如云南东川的泰隆酒店,它的下支墩不仅高,而且还有长短不一的情况出现。经济实用模式的主要问题是多数情况下建筑允许的下支墩尺寸有限,实际上很难全面满足工程要求,高而细的悬臂下支墩看上去像人在踩高跷,有点悬,也有工程在下支墩顶面做拉梁,把各个悬臂下支墩连接成一个整体的空框架,虽然改善了受力,但会影响地下室净高。
对于处于地震带上的公路、铁路建筑,为减小地震灾害,现多选用抗震支座或减隔震支座产品。对于上部结构存在向上的反力的建筑,一般选用拉压支座。对于悬索桥、斜拉桥等存在漂浮结构的建筑,在梁体横向一般需要选用抗风支座产品。对于沿海及跨海建筑,为保证支座使用寿命,则多选用耐蚀支座产品(一般为耐蚀球型支座)。对于跨铁路、高山跨峡谷的建筑,为了不干扰铁路运行和减小施工难度,多选用转体法施工,因此多选用转体球铰产品。对于在高纬度地区低温环境,为保证钢材应力,多选用低温用支座。
摩擦复摆隔震支座厂家
活动支座:仅传递竖向力,同时允许主梁在支座处实现自由转动与水平移动,适配梁体因温度变化、荷载作用等产生的变位需求。
橡胶建筑支座抗滑稳定性计算橡胶支座一般直接设置在墩台和梁底之间,在其受到梁体传来的水平力后,则支座与下面的垫石及上面的梁底间要有足够大的摩擦力,以保证支座不滑走,即:无活载作用时,应满足:μRGK≥1.4GEAG△T/TE有活载作用时,应满足:μRCK≥1.4GEAG△T/TE+FBK式中,μ为摩擦系数,橡胶支座与砼表面的摩阻系数取0.3,与钢板的摩阻系数取0.2;RGK为由结构自重引起的支座反力;RCK为由结构自重和汽车活载(计入冲击系数)引起的小支座反力;GEAG△T/TE为温度变化等因素因为支座大剪切变形时的相应水平力;FBK为由活载引起的制动力分在一个支座上的水平力;AG为支座平面毛面积。
摩擦摆隔震支座FPSII-9000-400-4.11源头工厂
竖向极限拉应力测试:通过仅施加轴向拉力并缓慢分级加载至破坏,可测得支座的竖向极限拉应力,为设计提供依据。
四氟乙烯滑板式橡胶支座(简称 “四氟板式支座”,型号系列为 GJZF4、GYZF4)是在普通板式橡胶支座表面粘覆聚四氟乙烯(PTFE)滑板制成,关键参数如下:荷载等级:100kN-10000kN,覆盖中小跨径至大跨度结构需求;滑板规格:聚四氟乙烯板厚度 1.5mm-3mm,表面粗糙度≤0.8μm,确保低摩擦特性;配套组件:需与梁底不锈钢板(厚度 2mm-3mm,镜面处理)搭配使用,形成滑移副。

支座的正确安装是保证其使用效果的关键环节。在施工过程中,需要严格控制以下技术参数:水平精度倾斜度:≤1/500;隔震支座与设计标高高度差:±3mm;隔震支座位置精度:X-Y方向±5mm
滑移量问题:结构的滑移量随地震强度的增加而增大。
