橡胶建筑支座抗滑稳定性计算橡胶支座一般直接设置在墩台和梁底之间,在其受到梁体传来的水平力后,则支座与下面的垫石及上面的梁底间要有足够大的摩擦力,以保证支座不滑走,即:无活载作用时,应满足:μRGK≥1.4GEAG△T/TE有活载作用时,应满足:μRCK≥1.4GEAG△T/TE+FBK式中,μ为摩擦系数,橡胶支座与砼表面的摩阻系数取0.3,与钢板的摩阻系数取0.2;RGK为由结构自重引起的支座反力;RCK为由结构自重和汽车活载(计入冲击系数)引起的小支座反力;GEAG△T/TE为温度变化等因素因为支座大剪切变形时的相应水平力;FBK为由活载引起的制动力分在一个支座上的水平力;AG为支座平面毛面积。
在支座选型方面,应优先考虑矩形支座设计,因为矩形支座沿短边方向的转动性能明显优于长边方向;圆形支座虽然各向转动性能一致,但总体转动效能通常不及矩形支座。支座设计不仅要满足承受和传递荷载的基本要求,还应确保桥跨结构能够产生必要的变位,同时保证力的传递路径合理通畅,避免出现过度应力集中现象。
FPS支座厂家
摩擦摆支座在建筑结构的设计中也必不可少,能够有效地降低建筑结构的自然频率,并提高其抗震性能。
由于建筑结构每一层的质心位置存在差异,上部结构的质心需要统一到一个特定点。在实际工程计算中,通常采用D+0.5L落到隔震层上的竖向构件底部的轴力来计算上部结构质心位置。
摩擦摆隔震支座FPS-Ⅱ-8000-200源头工厂
隔震层的偏心:指上部结构的质心与隔震层隔震支座的刚心不重合,这对隔震层端部的隔震支座的水平变形影响很大,当偏心很大时,结构角部的隔震支座可能产生较大的水平位移,甚至超出限位控制,而此时中部某些隔震支座变形很小,整体隔震不合理。对于相同的偏心矩和偏心率,由于隔震层平面形状、隔震支座位置、非线性特性引起的扭转振动也不相同。即使在弹性设计时,不存在偏心,但在高压力下,特别是第二形状系数较小的小型叠层橡胶支座的刚度会降低;地震时摩擦支座的摩擦力与轴力相关;铅芯橡胶支座、阻尼器等会因为制作安装上的误差导致刚度的变化等,偏心是难以避免的。
摩擦系数变化:在长期不活动的条件下,其摩擦系数可能发生变化。
建筑摩擦摆隔震支座FPS3A生产厂家
耐久性好:质量中心和刚度中心重合,消除结构因质心和刚心偏心而导致的扭转影响;构造简单,性能稳定,在无维护保养条件下使用年限可与建筑物相同;耐高温,力学性能受周围环境温度影响小。
隔震支座的施工方法:混凝土浇筑法和灌浆料填充法是隔震支座施工过程中的两种常见方法。混凝土浇筑法施工精度较难控制,可能对隔震支座产生扰动,而灌浆料填充法则具有流动性好、填充密实的优点,适用于隔震支座与下部结构之间的间隙填充。
隔震支座FPS-Ⅱ-2000-500-3.8生产厂家
梁体与支座密贴控制:安装预制梁时,需保证梁底与垫石顶面平行、平整,使梁底、支座上下表面及垫石顶面全部密贴,避免偏心受压、脱空或不均匀受力;若支座宽度小于梁筋底宽度,需在支座底部设置大型钢筋混凝土梁杆支座垫或厚板转换层,防止局部压缩及应力集中。
为实现梁体精准落位,可在梁体底部预先标记支座十字中心线,并在梁端立面位置绘制相应的竖向对中参考线,使安装时梁体轴线与墩台支座中心线完全重合。

硫化工艺:在硫化过程中,温度与时间的精确控制至关重要。不同规格的支座需要设定对应的硫化时间。若时间不足,会导致支座内部“夹生”,即内部胶料未充分硫化,严重影响产品的力学性能和耐久性。
支座就位是一个关键步骤,滑移面的清洁和润滑直接影响到支座的滑动性能。在安装前,需用丙酮对滑移面进行仔细清洁,去除表面的油污、灰尘等杂质,确保滑移面的洁净。然后注满 5201 硅脂,用量≥200g/㎡,硅脂具有良好的润滑性能和抗老化性能,能够大大降低支座滑移面之间的摩擦系数,保证支座在水平位移时的顺畅性 。地脚螺栓孔采用高强无收缩砂浆灌注,这种砂浆具有早期强度高、无收缩等优点,能够确保地脚螺栓与基础之间的牢固连接,防止在使用过程中出现松动现象。螺栓紧固力矩需按型号严格控制,以 GPZ2000 支座为例,力矩≥300N?m,通过精确控制螺栓紧固力矩,保证支座在安装后能够稳定地工作,承受桥梁结构传来的各种荷载 。
