其隔震原理是通过支座的摆动,延长下部结构的自振周期,实现隔震功能。周期一般为桥梁固有周期的2倍以上,通常在2秒至6秒之间,以避免周期太大难以复位或周期太小导致梁体升高偏大。同时,通过滑动界面的摩擦消耗地震能量,实现减震功能。
橡胶支座的关键力学性能指标包括抗压弹性模量、抗剪弹性模量、水平抗剪倾角、不锈钢板摩擦系数、极限抗压强度、竖向极限拉应力等,这些指标是产品进场检测的核心依据。
摩擦摆减隔震支座FJZQZ9000GD源头工厂
密贴检查:支座安装后,应保证其上下表面与梁底和墩顶支承面全部密贴。
屈服后的刚度值偏低。为了确保隔震装置在地震中能自动回复原位,在1991年或1999年的AASHTO设计规范中均要求,在设计50%大位移时,装置的横向恢复力应大于支座承受重力的5%。该支座承受的重力为14200KN,50%的大位移160MM时的恢复力仅有1652KN,为重力的%。远不能满足设计要求,无法保证支座恢复原位。
摩擦摆隔震支座FPSII-7000-300-3.48源头工厂
支座使用寿命远短于建筑主体结构,建桥初期需严格把控支座产品质量,遵循施工规范施工,减少后期支座更换需求,延长建筑整体使用寿命。
屈服后的刚度值偏低。为了确保隔震装置在地震中能自动回复原位,在1991年或1999年的AASHTO设计规范中均要求,在设计50%大位移时,装置的横向恢复力应大于支座承受重力的5%。该支座承受的重力为14200KN,50%的大位移160MM时的恢复力仅有1652KN,为重力的%。远不能满足设计要求,无法保证支座恢复原位。
建筑摩擦摆隔震支座FPS3A
浅谈多层砖混建筑抗震设计的几点要求[J].黑龙江科技信息,2010,(1.侧表面垂直度可用直角尺或具有相应精度的量具测量。测量垫石顶面标高,如顶不平整,则用环氧砂浆抹平。测量放线。在支座及墩台顶分别画出纵横轴线,在墩台上放出支座控制标高。测量梁底标高,并根据设计纸提供的梁底标高进行复核,并将复核情况详细记录并妥善保存,作为交工文件之一。测量梁片与墩台之间的实践间隔,并察看放置千斤顶的地位及暂时支撑地位。测量设备显示建筑物发生了多达23厘米的水平位移。(图片:MORITRUSTCO.,LTD.)测量原支座和新支座的高度差,调整施工确保梁体、桥面高程符合设计要求。
隔震技术应用工程实例:例如东京目白花园建筑群采用的人工场地隔震技术,将多栋高层建筑建于一个大型的整体隔震基础之上。
摩擦摆隔震支座FPSII-5000-350-3.81源头工厂
通过依据建筑纵横坡角度专门设计的斜坡构造,有效简化建筑设计及施工流程。此类支座能彻底消除梁体、支座与墩台之间的脱空现象。其突出优点在于不受建筑纵横坡角度限制,相较于球冠圆板支座具有更广泛的适用性。
建筑摩擦摆支座,也被称为摩擦摆减隔震支座或摩擦滑移隔震支座,是一种特殊的建筑结构支承装置。它利用钟摆原理,通过滑动界面的摩擦消耗地震能量,实现减震功能,并通过球面摆动延长梁体运动周期,实现隔振功能。

隔震技术工程实效验证:1994 年台湾海峡发生 7.3 级地震,距震源约 200 公里的汕头市烈度达 6 度,常规建筑摇晃明显,而当地陵海路隔震建筑内人员未感知晃动,仅通过周边环境反馈得知地震发生,直观验证了隔震技术的实际抗震效果,为技术推广提供了工程实证。
大型储油罐:可以帮助减少地震对储油罐的影响,降低潜在的安全风险。
