隔震等级与初步设计:设计单位需先确定水平向减震系数,通过 “设防烈度降低一度” 的思路,以减震后的水平地震作用进行上部结构初步设计,进而明确隔震支座的规格型号。
建筑隔震支座每 5 年进行一次动力特性测试,阻尼比是反映隔震支座耗能能力的重要参数,当阻尼比下降>20% 时,说明隔震支座的耗能能力大幅降低,无法在地震发生时有效地吸收和耗散地震能量,此时需要及时更换支座,以保证建筑在地震中的安全 。
FPS支座源头工厂
板式支座承受的地震力受多种因素影响,其中滑板支座的滑动摩擦系数与场地条件的关联性最为显著:场地条件影响:在 Ⅰ 类场地(坚硬场地,如岩石地基)中,地震波传播速度快、频率高,摩擦系数对地震力的影响较小;在 Ⅳ 类场地(软弱场地,如淤泥质土、松散砂层)中,地震波能量易积聚,摩擦系数增大时,支座传递的地震力显著上升;烈度水平影响:地震烈度越高(如 8 度、9 度区),摩擦系数对地震力的敏感度越强,需通过提高隔震支座的耗能能力(如采用高阻尼橡胶),抵消摩擦系数波动带来的不利影响。
支座使用寿命与维护需求:支座设计使用寿命通常为 10~20 年,特殊工况下使用寿命可能进一步缩短,而建筑主体结构寿命远长于支座,因此支座定期更换是保障工程长期抗震性能的关键。支承垫石的设置可为支座更换提供操作空间 —— 便于千斤顶放置与支座拆装,是实现支座顺利更换的重要前提。
摩擦摆隔震支座FBD厂家
硫化工艺:在硫化过程中,温度与时间的精确控制至关重要。不同规格的支座需要设定对应的硫化时间。若时间不足,会导致支座内部“夹生”,即内部胶料未充分硫化,严重影响产品的力学性能和耐久性。
隔震支座检查合格后,放轴线和上层的墙柱边线,验收合格后支设上支墩模板,用15MM木胶合板支设上支墩和梁、板的模板,上支墩底模上表面标高比上连接板标高高10MM,模板与上连接板接缝处贴5MM厚10MM宽自粘性海绵条,下部用方木支撑,用木楔调整模板标高,准确后用钉子将木楔固定,且用短木条将作为支撑的方木相互连接成一个整体。梁、板下部支撑采用快拆支撑体系。后序施工同结构。
建筑摩擦隔震支座生产厂家一套源头工厂
铅支座:利用铅的塑性变形能力来耗能,在某些特定抗震结构中有应用。
建筑摩擦摆支座,也被称为摩擦摆减隔震支座或摩擦滑移隔震支座,是一种特殊的建筑结构支承装置。它利用钟摆原理,通过滑动界面的摩擦消耗地震能量,实现减震功能,并通过球面摆动延长梁体运动周期,实现隔振功能。
摩擦复摆隔震支座源头工厂
定位准确:支座安装位置必须精确,确保与设计一致。
球形支座优缺点:其优点是整体支座高度相对较小,构造较为简洁,用钢量经济;缺点主要体现在无法有效抵抗拉力,支座高度不可调整,允许的转动量有限,并且在日后需要更换和修理时操作不便。

采用减隔震组合技术,在建筑中加入旋转摩擦阻尼器以满足由EEDP进行减隔震设计的建筑的实际地震需求。对旋转摩擦阻尼器的结构形式及工作原理、荷载-位移关系、耗能的稳定性进行了介绍。结合旋转摩擦阻尼器滞回曲线的特点,将其与弹簧结合能够得到弹塑性双折线模型,就这一组合在高速铁路建筑中的应用形式进行了简要探讨。
近日有与同行探讨某隔震方案,说起一个新的问题,《建筑工程建筑面积计算规范》(GB/T50353-201规定:结构层高在20M及以上者计算全面积,结构层高不足20M的计算1/2面积。本条规定主要是针对坡地建筑,但有些地方的建设主管部门理解较为生硬,要求对独立的、除检修以外并无使用功能的隔震层也套用本条文,导致如果采用隔震技术建筑面积会增加的情况出现,使项目遭遇困境,这本是不该发生的故事。
