转角监测:及时发现和处理因设计及安装不当造成的支座转角超限问题
隔震支座作为核心隔震元件,必须满足四项基本特性:足够的竖向承载力、适宜的竖向和水平刚度、良好的水平变形能力以及合理的阻尼比。这种技术装置能够显著延长结构自振周期,增加结构阻尼,从而大幅降低地震作用对建筑物的影响。
FPS隔震支座源头工厂
摩擦摆隔振支座是一种重要的建筑结构隔震装置,具有显著的抗震效果和应用价值。
公路建筑板式橡胶支座抽检项目及频率?板式橡胶支座检测项目:原材料(厂家提供原材料合格证明);外观质量,外形尺寸(每批随机抽取,每种规格不少于3块);解剖试验(每300块随机抽取1块橡胶层数大于3层的支座);抗压弹性模量,抗剪弹性模量,抗剪粘结性,极限抗压强度(抽3中规格,用量100块以下的可抽一种,每种随机抽取3块)板式橡胶支座由于受施工环境的约束,滑板支座的施工显的比较重要,要保持滑板支座的四氟板表面和与之摩擦的不锈钢板表面清洁,应首先把工作环境营造好,才能保证板式橡胶支座实现正常的工作状态。
摩擦摆隔震支座FPSII-6000-300-3.48源头工厂
1981年铁道科学研究院曾对在安徽固镇铁路桥上使用了10年之后取下的支座进行力学性能测定,实测支座〔150MM300MM28MM)抗压弹性模量E=527MPA,与铁路标准值670MPA相比抗压模量还略有下降;剪切模量实测为1.315MPA比理论值1.1MPA增加约19.55%。
采用减隔震组合技术,在建筑中加入旋转摩擦阻尼器以满足由EEDP进行减隔震设计的建筑的实际地震需求。对旋转摩擦阻尼器的结构形式及工作原理、荷载-位移关系、耗能的稳定性进行了介绍。结合旋转摩擦阻尼器滞回曲线的特点,将其与弹簧结合能够得到弹塑性双折线模型,就这一组合在高速铁路建筑中的应用形式进行了简要探讨。
摩擦摆隔震支座FPSII-3000-350-3.81源头工厂
支座垫石应配置专用钢筋网,当采用直径8毫米钢筋时,网格间距宜控制在50毫米×50毫米。桥梁墩台结构应有竖向受力钢筋延伸至支座垫石区域,垫石混凝土强度等级不应低于C30标准。
《规范》没有对滑板橡胶支座下桥墩地震力的计算给出明确规定,如果根据摩擦力与桥墩自身地震力叠加并乘以相应的系数作为设计地震力,则存在可能得到的桥墩屈服强度低于滑板支座发生滑动的摩擦力,从而导致墩的屈服先于滑板支座发生滑动,这与预期的性能不一致;此外,由于存在滑板支座不发生滑动的可能,因此,设计中应根据滑板支座的实际情况进行桥墩相应的抗震设计,这是目前规范所没有考虑的。
摩擦摆隔震支座FPSII-7000-300-3.48厂家
可靠性高:经过严格的试验验证和工程实践,摩擦摆隔震支座具有较高的可靠性和耐久性。
建筑隔震技术是近四十年来抗震防灾工程领域重大的创新技术之一,现阶段具有无可比拟的优越性,能降低地震力50-80%。它能使结构安全性成倍提高,并能保护内部设备仪器,在地震后不丧失使用功能,实现结构、生命、室内财产“三保护”,近年来其优异的抗震效果在外大地震中得到了检验。

支座在长期使用中可能出现以下问题,需针对性治理:
板式橡胶支座普遍存在 “过早退化、寿命短(未达设计年限 15-20 年)” 的问题,核心成因包括:施工缺陷:基层处理不洁净(残留浮砂、灰尘、缝隙),导致支座与垫石间出现空鼓,受力不均引发局部开裂;材料劣化:橡胶长期暴露于紫外线、高温环境,出现硬度上升(增幅>15IRHD)、弹性下降,钢板锈蚀(未做防锈或涂层破损);荷载异常:摩擦系数超标(>0.03),低烈度地震下滑板支座易局部滑动,尤其当相邻桥墩水平刚度差异大、滑板支座置于刚度较小墩顶时,滑动现象更明显,超出规范公式适用范围;结构变形:垂直荷载作用下,橡胶层厚度不均导致侧面出现波纹状凸凹(钢板处凹陷、橡胶层处凸起),长期易引发橡胶层剥离。
