压缩变形:支座的竖向压缩变形不应大于支座总高度的2%。
荷载分析:精确计算恒载(如结构自重)与活载(如车辆、人群)产生的反力,确保支座承载力留有余量。
摩擦摆支座
目前,日本使用的减振系统分为两大类,即主动式减振装置和被动式减振装置。目前,新建的公路建筑几乎全部选用橡胶支座。目前,性能化设计的实施过程可简要地概括为三步:目前板式橡胶支座已成为公路与城市建筑J-泛采用和深受欢迎的一种支座形式。目前板式橡胶支座已成为公路与城市建筑J—泛采用和深受欢迎的一种支座形式。目前常用的建筑支座主要有两大类,一类是板式橡胶支座,另一类是盆式橡胶支座。目前公路建筑已较少采用铸钢支座,铁路建筑也开始使用其他类型支座,如盆式橡胶支座。目前建筑检测主要是通过人工目测或者采用一些仪器设备进行现场测试、荷载试验及其他辅助性试验来进行的。
脱空现象:多由安装定位偏差、梁体倾斜或垫石不平整导致,防治核心是确保安装时中心线对齐、梁底与垫石平行,利用底部橡胶圆环调节受力。
摩擦摆隔震支座厂家
板式橡胶支座:具备基础的竖向刚度与弹性变形能力,可承受垂直荷载并适应梁端转动,是工程中应用最广泛的基础类型。
通过对部分高速公路板式橡胶支座的实际使用情况进行调查,发现用户在板式建筑支座的安装过程中可能出现的问题如下:部分梁底支座安装位置平面与墩台处支承垫石上表面夹角过大,造成支座单边受力,因而支座局部变形严重,如果继续增加恒载和汽车活载,梁体会继续发生挠曲变形,这样会加大梁底的倾角,严重时会造成板式橡胶支座单边脱空。
建筑摩擦隔震支座
若支座安装不满足设计规范,监理应要求施工单位提交专项处理方案,审批通过后方可实施修补或更换。
隔震体系优越性:理论和实践均表明,只要一个隔震体系具备有效的隔震功能,它就能表现出非常明显的减震能力。与传统依赖结构构件增强来“抵抗”地震的抗震结构体系相比,性能优良的隔震体系在保护上部结构、减小地震响应方面具有显著的优越性。
摩擦摆隔震支座FPSII-3000-300-3.48
布置规范:严禁两个及以上支座沿梁底纵向中心线在同一支承点并排安装;同一根梁(板)横向不宜设置多于两个支座;不同规格支座不得并排安装,以防应力集中与位移不协调。
摩擦摆隔震支座通常由上部结构连接板、球面滑动层、摩擦材料、复位装置和下部结构连接板等部分组成。当地震发生时,上部结构相对于下部结构产生水平位移,球面滑动层开始滑动,摩擦材料产生摩擦力,消耗地震能量。同时,复位装置提供恢复力,使上部结构在地震后能够恢复到原来位置。

聚四氟乙烯是一种乳白色高分子化学聚合物,商业名称为特氟隆。开封验货后,应将防护包装恢复。开启同步顶升系统,平稳降落梁体。抗剪弹性模量:检测产品水平变形应力大小(关键项目)抗剪机构可设置在聚醚聚氨脂圆盘的内部或外部,如果剪力由外部的单独装置传递,则支座本身不受力。抗剪老化性能:检测产品耐老化性能,目前该标准因试验标准较低,意义不大。抗剪粘接性能:检测产品内部钢板与橡胶粘接的是否存在缺陷,(关键项目)抗压弹性模量:检测产品设计的弹性大小。抗震鉴定结果应当对建设工程是否需要进行抗震加固和是否存在严重抗震安全隐患作出判定。抗震盆式橡胶规格按JT391-1999要求分为31级。
橡胶支座设计应充分考虑结构的受力特点和变形需求。对于建筑支座结构工程师而言,需要重点关注建筑的结构形式和受力特性,合理选择支座类型和参数。
