橡胶支座水平刚度受橡胶性能、形状系数、压剪条件影响,仅当满足以下条件时,可按剪切情况计算 K_H:形状系数:S?≥15,S?≥5;受力状态:竖向压应力≥15MPa,设计剪切应变≤350%;材料参数:橡胶剪切模量按实测值(天然橡胶 23℃时约 0.8MPa,高阻尼橡胶约 1.5MPa)。计算公式:K_H = (G×A)/t(G 为橡胶剪切模量,A 为支座承压面积,t 为橡胶层总厚度)。
某医院建筑便是一个典型案例,该医院在建设时应用了橡胶隔震支座。在强震发生时,它仅产生了轻微的晃动,内部的医疗设备依然保持完好,医疗工作得以正常开展,为救援伤病员提供了有力保障。而相邻的未采用隔震技术的建筑却遭遇了截然不同的命运,墙体出现了严重的开裂,结构发生移位,部分建筑甚至面临坍塌的危险,无法再正常使用。
FPS支座
C40 混凝土柱:600mm 直径圆形柱(假设柱高 3m),线刚度计算为9189kN·m/rad,计算依据:C40 混凝土弹性模量 3.25×10?MPa,截面惯性矩 I=π×(0.6m)?/64≈0.00636m?,线刚度 EI/L=3.25×10?kN/m2×0.00636m?/3m≈68250kN?m/rad,实际 600mm 直径 C40 柱(L=3m)线刚度约 6.8×10?kN?m/rad,与 LRB 支座竖向刚度(2667kN/m)分属不同力学参数(竖向刚度 vs 线刚度),正确对比应为 “LRB 支座竖向刚度仅为同截面 C40 混凝土短柱(L=0.5m)竖向刚度的 1/5~1/8”,体现隔震支座 “竖向稳、水平柔” 的特性。
摩擦摆隔震支座通常由上部结构连接板、球面滑动层、摩擦材料、复位装置和下部结构连接板等部分组成。当地震发生时,上部结构相对于下部结构产生水平位移,球面滑动层开始滑动,摩擦材料产生摩擦力,消耗地震能量。同时,复位装置提供恢复力,使上部结构在地震后能够恢复到原来位置。
摩擦摆支座定制厂家
隔震橡胶支座一般设于建筑基础与上部结构之间,具备优良的水平变形能力,可显著降低地震能量向上部结构的传递。该技术施工简便、系统集成度高,已成为当前提升建筑抗震性能的重要技术手段。
固定点设定:连续梁桥等结构需设置固定支座,其位置可选择在中墩或桥台上。选择时,需综合考虑荷载大小与位移量,从而决定采用橡胶支座还是金属支座。
建筑摩擦摆减隔震支座
LRB500隔震支座的构造,LRB500隔震支座由以下几个部分组成:
隔震橡胶支座是由薄钢板和薄橡胶板交互叠合、模压硫化而成,钢板与橡胶板的黏合强度关系到支座在承载时钢板对胶层的约束效果及在发生地震时的变形能力,因此黏合强度极为重要。目前钢板采用喷砂处理,涂上由含卤聚合物弹性体、黏合增进剂和偶联剂等组成的热硫化胶黏剂。双涂比单涂更佳,黏合强度一般都在15KN?M-1以上。
10000KN摩擦摆隔震支座生产厂家
场地类型:对墩底弯矩的减隔震效果及墩、梁相对位移有较大影响。
建筑橡胶支座按照其用途,可分为铁路建筑支座与公路桥板式橡胶支座按胶种适用温度分类如下:A、氯丁橡胶:适用温度+60℃∽-25℃天然橡胶:适用温度+60℃∽-40℃三元乙丙橡胶:适用温度+60℃∽-45℃板式橡胶支座适用的范围一般来说普通板式橡胶支座适用于跨度小于30M、适合位移量较小的建筑.不同的平面形状适用于不同的桥跨结构,正交建筑用矩形支座;曲线桥、斜交桥及圆柱墩桥用圆形支座.四氟板式橡胶支座适用于大跨度、多跨连续、简支梁连续板等结构的大位移量建筑.它还可用作连续梁顶推及T型梁横移中的滑块.矩形、圆形四氟板式橡胶支座的应用非别与矩形、圆形普通板式橡胶支座相同。

采用隔震技术的建筑物,与一般传统抗震结构相比,上部结构的地震反应减少到1/4到1/8左右,其抗震可靠度大大提高,建筑的设防目标一般可以提高一个设防等级。传统建筑的设防目标一般是。小震不坏,中震可修,大震不倒”而合理设计的隔震建筑通常能做到“小震不坏,中震不坏或轻度破坏,大震不丧失使用功能。,其潜在的经济效益和社会效益是十分可观的。按施工经验,隔震结构一般比非隔震结构造偷降低7-15%。
摩擦系数:摩擦系数对支座的阻尼性能有较大影响,在确定了准确的曲率半径基础上,选取合适的摩擦系数才能有效地增加建筑的抗震性。
