周期性检查与维护定期检查支座是否有扭曲、变形、开裂、钢板外露锈蚀等情况。支座顶部钢板若设计偏薄或防护不当导致生锈严重,会削弱其承载能力。
标准的多层橡胶支座由交替叠合的橡胶层与加劲钢板构成。加劲层能显著提升支座的抗压强度与抗压刚度,而无加劲层的简易型号仅适用于小跨径建筑。其中,铅芯橡胶支座更通过铅芯的塑性变形吸收地震能量,震后依靠铅的动态恢复特性与橡胶的弹性恢复力,促使建筑结构自动复位。
FPS支座生产厂家
隔震与消能减震设计的核心优势是 “非线性、大变形集中于隔震支座与阻尼器”,具体体现:设计聚焦:仅需优化隔震构件(支座阻尼比、水平刚度),无需复杂计算上部结构非线性响应;分析简化:上部结构因地震作用降低(降幅 60%-80%),可按弹性变形分析,结果更可靠;修复便捷:震后仅需更换受损隔震构件,上部结构基本无损伤,降低修复成本。
四氟滑板式橡胶支座预处理:安装前,需确保四氟板表面的储油槽内填充满足量的专用硅脂。
建筑摩擦摆式减震支座厂家
1965 年,上海橡胶制品研究所、上海市政工程研究所、上海市政设计院联合启动板式橡胶支座研制,突破 “橡胶 - 钢板硫化粘合” 关键技术;1970-1980 年,先后在广东(广深公路桥)、上海(南浦大桥引桥)、山东(济青高速桥)等省份的公路桥应用,开启我国橡胶支座规模化推广序幕,目前已成为中小跨径结构的主流支座形式。
昆明的规划展览馆就是采用建筑师模式。建筑师和上部结构工程师几乎可以按非隔震项目做设计了。只是地下部分头疼,要给建筑整个加一个套,周边形成永久的悬臂挡墙。基坑开挖深度也会加深,如果是软土区多层地下室结构,则这个压力就比较大,有些工程不得不设置一道厚度达到900MM的钢筋混凝土挡墙。如果地下室平面尺寸太大,远超过主楼范围,这个选择也不合适。此方案在一定程度上检修和更换隔震支座的难度也有增大。人防方面也有其特点,地下室六面理论上全成临空墙了,和前面一样,也许需要研究战时加固的问题,不可能直接把隔震沟填了,并不是担心战争的时候还有地震,而是战争结束后还得把土掏出来。其实这个方案还有一个意外的好处,主体结构地下室不用防水了!因为全部通过隔震间歇和土体完全隔离了,顶面覆土除外。
摩擦摆隔震支座FPS-Ⅱ-8000-200生产厂家
摩擦摆减隔震支座的关键性能指标明确:正常工作状态下摩擦系数不大于 0.03,减隔震工况下摩擦系数不大于 0.05,适用温度范围为 - 40℃~60℃;剪力螺栓设计需满足竖向承载力 5%-15% 的要求,未明确注明时按竖向承载力的 10% 设计。
该支座通常由上、下两部分组成,上部连接桥梁或建筑物,下部连接基础或桥墩,中间通过钢板和轴承实现连接,同时在钢板和上、下部之间设置了摩擦体,从而形成一定的摩擦阻力。
减隔震摩擦摆支座
当地震或其他外力作用于上部结构时,结构会产生位移,摩擦摆隔振支座即通过摩擦力的作用来控制结构的位移,从而达到减震的效果。同时,其内部的摆动机制允许支座在水平方向上自由摆动,有助于将振动能量转移到摩擦滑块上,实现振动能量的耗散。
在建筑隔震层的设计中,支座平面布置的合理性对于建筑结构的抗震性能起着决定性作用。为了避免地震时建筑结构因扭转效应而产生过大的应力集中,导致结构破坏,需要使结构刚度中心与质量中心的偏移≤5%。这一要求是基于大量的地震模拟试验和实际震害分析得出的。以某大型商业建筑为例,在设计初期,通过 BIM 技术对建筑结构进行了三维建模和分析,发现原设计方案中结构刚度中心与质量中心的偏移达到了 8%,超出了安全范围 。经过设计团队对隔震支座布置的优化调整,将部分支座的位置进行了微调,并合理增加了一些支座的数量,最终使得结构刚度中心与质量中心的偏移控制在了 4% 以内,大大提高了建筑在地震中的稳定性 。同时,隔震墙下支座间距≤2.0m,这一间距的设定是为了确保荷载能够均匀分布在隔震层上,避免出现局部应力过大的情况。在实际工程中,通过在隔震墙下按规定间距均匀布置支座,并进行详细的结构力学计算和分析,保证了整个隔震层能够有效地发挥其隔震作用,为上部结构提供稳定的支撑和保护 。

加劲钢板的作用:钢板主要约束橡胶层侧向膨胀,但对支座抗剪刚度影响甚微。加劲与不加劲橡胶支座在相同厚度下,水平力作用产生的位移量大致相同。
这样的异常现象容易随着时间的增长,钢板锈蚀严重,导致支座受力不均或支座无法受力。这样就容易造成支座局部脱空,局部剪应变总过大,严重的甚至会造成支座胶层开裂,降低其使用寿命。这样可以延长橡胶支座的使用寿命。这一系列工序非常重要,它将影响混凝土的浇筑质量。这种类型的减(隔)震橡胶支座包括高阻尼性能的橡胶支座、普通橡胶支座和铅芯橡胶支座等。这种裂缝一般都要影响结构的安全,应进行必要的处理。
