隔震系统的位移能力不足。依据AASHTO标准验算可得,该高架桥隔震系统的大位移为820MM。而原设计的隔震系统的极限位移仅有210MM(滑动支座)——480MM(屈服耗能装置的极限位移)。通过利用博卢和达兹两处地震观测站分别对地震场地进行了地面运动情况的观测,并模拟了近断层的运动情况,得到的峰值位移应为1400MM。这巨大的差别说明了该设计不仅非常不合理(隔震的两部分位移能力不同),也远远不能满足达兹近场大地震的要求。
建筑隔震技术,就是在建筑的某一层,通常在建筑上部结构与基础(或下部)结构之间,设置由隔震橡胶支座和阻尼器组成的隔震层,把建筑物上部结构与地基基础“分离开”,用以改变结构体系振动特性,延长结构自振周期,增大结构阻尼,通过隔震层的水平大变形消耗掉大部分地震能量,减少地震能量向上部结构输入,从而有效降低地震作用所引起的上部结构地震反应,减小层间剪力及相应的剪切变形,达到预期的防震要求。
摩擦隔震支座
桥梁工程:是桥梁构件减隔震领域的常用产品之一。能减小传递到桥梁结构中的侧向力和水平振动,使桥梁在地震下免受破坏,适用于各种类型的桥梁,如铁路桥、公路桥等。在铁路桥梁结构中,摩擦摆支座可传递荷载并限制结构变形,有助于确保整个交通系统的运营安全。
位移限制:防止支座聚四氟乙烯板滑出不锈钢板板面范围造成的位移超限问题
摩擦滑移隔震支座
周期与竖向隔震设计要求隔震系统周期需符合设计规范,例如某隔震建筑针对 1080KN?M 屈服后刚度及 14200KN 重力荷载,理论周期应为 27S,但 1999 年 AASHTO 规范为限制隔震系统过大位移,将该周期上限设定为 6S,工程设计需严格遵循规范要求。竖向隔震(振)设计中,隔震(振)装置需具备合适的竖向刚度,使隔震(振)体系的竖向自振周期远离上部结构自振周期及场地(或振源)特征周期(或激振周期),从而有效隔离竖向震(振)动,降低上部结构震(振)动反应。
盆式橡胶支座安装过程中,底部及锚栓孔处空隙需采用重力灌浆方式灌注。规范的灌浆操作应从支座中心部位开始,逐步向四周扩散注浆,直至从模板与支座底板周边的间隙处可清晰观察到灌浆材料完全充盈。这种灌注顺序确保了气体有效排出,避免空鼓缺陷。
摩擦摆隔震支座FPSII-7000-300-3.48厂家
我国建筑支座型式多样,主要包括简易支座、钢支座、钢筋混凝土支座、橡胶支座及特种支座(如减震支座、拉力支座等)。其中,橡胶支座因构造简单、安装便捷、成本低廉、养护方便等优势被广泛应用。橡胶支座主要分为板式橡胶支座、盆式橡胶支座和四氟滑板式橡胶支座:依靠橡胶层与加劲钢板叠合结构提供承压与剪切变形能力,适用于小跨径桥梁。
摩擦摆支座的原理是依据摩擦阻力来实现结构调整和减震的。其基本原理如下:
建筑摩擦摆隔震支座FPS3A源头工厂
抗震与减震需求:在高烈度地震区,应优先考虑具有隔震、消能功能的支座,如铅芯橡胶支座或特殊消能支座。
隔震技术核心原理:隔震技术通过在基础与上部结构之间设置隔震层,使上部结构与地震动 “绝缘”—— 地震时隔震层吸收 80% 以上地震能量,大幅降低上部结构地震响应,该技术又称 “基础隔震技术”。目前隔震层主要由 “橡胶支座 + 阻尼装置” 构成,部分场景可单独采用橡胶支座(如低烈度区)。

隔震支座施工组织设计,必须有安全技术措施,施工现场所有安全设施必须按照施工技术措施的规定和要求设置。隔震支座下部结构件钢筋绑扎,并浇筑混泥土至下预埋板锚筋或预埋螺杆标高;隔震支座预埋件应符合现行有关标准、设计文件和施工方案的规定。隔震支座中心标高与设计标高的偏差不应大于5MM;隔震支座中心的平面位置与设计值位置的偏差不应大于5MM;各类钢筋代码说明,型钢代码及其截面尺寸标记说明;各类混凝土构件的环境类别及其外层钢筋的保护层厚度;各特殊工种经培训考试合格后持证上岗,严禁无证作业;各支承垫石顶面标高应符合设计要求。
球冠橡胶支座采用独特的万向转动设计,能够全方位适应上部结构的复杂受力状态。这种支座能有效传递各类荷载产生的反力,包括恒载、活载及风荷载和地震力等动态作用。其核心优势在于确保反力合力集中、明确且传递可靠,满足上部结构在各种工况下的转动和移动需求。
