常见施工质量隐患与防控板式支座安装常因被认为操作简单而被忽视,易引发支座垫石不平整、支座脱空、剪切变形过大、支座开裂等问题,需强化施工全过程管控。同时,支座与伸缩装置的配套安装需同步符合规范,确保伸缩位移顺畅,避免因安装偏差导致支座附加应力。
曲率半径:曲率半径过大可能导致桥板大幅度晃动,增加落梁的概率;曲率半径过小则会使减震球摆的晃动太小,不利于消耗地震能量。在高速铁路桥梁摩擦摆支座隔震设计中,应当考虑曲率半径对梁体位移、支座残余位移和桥墩内力的影响,再因地制宜选择合适的曲率半径。
摩擦摆隔震支座FPSII-6000-400-4.11厂家
修建隔震橡胶支座除了自身的隔震力学功用满意抗震描绘及运用需求外,还具有以下长处:一是修建隔震橡胶支座耐久性好,抗低周期疲惫功用、抗热空气老化、抗臭氧老化、耐酸性、耐水性均较好,其寿数可达80~100年,时间的隔震力学功用不会发作明显变化,也就是说在80年之内不会影响运用,可见,与修建物具有平等寿数。
2010 年 2 月 27 日,智利遭受了 8.8 级特大地震的猛烈袭击,这场地震成为了检验隔震技术实际效果的 “试金石”。在此次地震中,采用橡胶隔震支座的建筑展现出了令人惊叹的抗震性能,与未采用隔震技术的建筑形成了鲜明对比。
摩擦摆隔震支座FPSII-1000-350-3.81厂家
FPS摩擦摆支座是一种有效的结构隔震装置,能够显著提高建筑物和桥梁在地震时的抗震性能,保护人们的生命和财产安全。
在连续梁桥的设计中,支座布置是一个至关重要的环节,它直接关系到桥梁结构的受力性能和稳定性。根据工程经验和相关规范要求,单联长度≤200m,跨数≤6 跨时,桥梁结构的受力状态相对较为理想,支座的布置也相对简单。当超过这一范围时,就需要对固定支座位移量进行严格验算。例如,某连续梁桥单联长度达到 220m,跨数为 7 跨,在设计过程中,通过有限元分析软件对不同工况下的固定支座位移量进行了详细计算,发现靠近滑动支座的固定支座在温度变化、混凝土收缩徐变以及车辆荷载等因素的综合作用下,位移量超出了普通支座的设计允许范围 。针对这一情况,经过结构工程师的反复论证和计算,决定在合适位置增设滑动支座,且滑动支座间距≤30m。通过增设滑动支座,有效地分担了固定支座的位移压力,使得桥梁结构在各种工况下的位移均能控制在安全范围内,保证了桥梁的正常使用和结构安全 。
摩擦抗震支座源头工厂
承载力验算:隔震层支墩、支柱及相连构件应采用隔震结构罕遇地震下隔震支座底部的竖向力、水平力和力矩进行承载力验算
建筑摩擦摆减隔震支座是一种特殊的结构支承装置,它基于摩擦单摆原理来实现减隔震的功能。该支座利用滑动界面的摩擦消耗地震能量,并通过球面摆动来延长梁体运动周期,从而实现减震和隔振的效果。
摩擦摆隔震支座FPSII-2000-350-3.81厂家
连续梁桥等在实行体系转换切割临时锚固装置时,必须采取隔热措施,以免损坏橡胶板和聚四氟乙烯板。连续梁桥每联(由两伸缩缝之间的若干跨组成)只设一个固定支座。梁、板的起拱要求及拆模条件;梁板安放时,必须仔细,使梁板就位准确与支座密贴,就位不准时,必须吊起重放,不得用撬棍移动梁板。梁板落梁时应位置准确,且与支座密贴。梁的顶升和落梁应按设计要求进行。宜临时封闭交通。梁底钢板和不锈钢板可配套供应。梁底钢板与支承垫石(或钢板)顶面尽可能保持平行和平整。梁底混凝土大多在30MPA以上,也有一部分支座可以忍受超过50MPA压力。梁底支持嵌入钢板只是想害怕压力,梁底混凝土破碎。梁顶面标高以下的箍筋和拉钩全部绑扎到位,以上的箍筋和拉钩待梁筋绑完后再施工。梁端反力通过球面表面橡胶逐渐扩散传至下面几层钢板和橡胶层。梁附属装置研发生产企业,其产品广泛运用于外建筑建设。梁落梁的梁桥,纵向轴与支座中心线;板梁,箱形梁纵向轴与支座中心线平行的。
其隔震原理是通过支座的摆动,延长下部结构的自振周期,实现隔震功能。周期一般为桥梁固有周期的2倍以上,通常在2秒至6秒之间,以避免周期太大难以复位或周期太小导致梁体升高偏大。同时,通过滑动界面的摩擦消耗地震能量,实现减震功能。

支座底面与顶面的钢垫板需采用环氧砂浆或高强无收缩砂浆埋置密实,确保垫板与支座接触面平整密贴。采用塞尺检查缝隙,支座四周缝隙不得超过 0.3mm,超出时需通过研磨垫板或补充砂浆调平,避免局部受力集中。
具有类似于橡胶隔震支座的隔震效果,且具有更高的竖向承载能力和更大的水平变形能力。
