GPZ 系列盆式橡胶支座凭借大承载、大位移、大转角的技术特点,适用于跨度较大、荷载较重、位移需求显著的大型建筑与桥梁工程,尤其适配对支座性能要求严苛的复杂结构场景。
地基隔震技术主要通过使用砂垫层、软粘土等材料在建筑物地基中设置防震层。当地震发生时,建筑物地基能够通过防震层反复吸收地震波能量,从而达到降低地震作用的效果,有效保护建筑物安全。
FPS摩擦摆支座
隔震技术工程实效验证:1994 年台湾海峡发生 7.3 级地震,距震源约 200 公里的汕头市烈度达 6 度,常规建筑摇晃明显,而当地陵海路隔震建筑内人员未感知晃动,仅通过周边环境反馈得知地震发生,直观验证了隔震技术的实际抗震效果,为技术推广提供了工程实证。
铅芯橡胶支座特性与优势:耗能能力强:利用铅芯的塑性变形消耗大量地震能量。安全储备高:水平变形达到250%仍不影响使用功能。复位功能稳定:结构中的抗震层具备稳定的弹性复位功能,能有效减少震后残余位移。
FPS-AS2A隔震支座厂家
工程橡胶支座的核心性能需求集中在三个维度:垂直方向需具备足够刚度,在大竖向荷载作用下压缩变形控制在合理范围(一般不超过橡胶厚度的规定比例);水平方向需具备适度柔性,以适应车辆制动力、温度变化、混凝土收缩徐变及活载作用引发的梁体水平位移;同时需良好适配梁端转动需求,保障结构整体受力均衡。
市政部门需组织管养单位对管辖建筑支座定期检查(每 1~2 年 1 次),重点排查三类病害:变形类:剪切变形超过设计值 110%、竖向压缩变形>20%;安装类:支座错放(轴线偏差>15mm)、脱空(脱空面积>5%);材料类:橡胶开裂(长度>100mm)、钢件锈蚀(锈层厚度>0.3mm)。发现病害需立即采取措施(如脱空处灌注环氧砂浆、变形超限支座更换),确保结构安全。
摩擦摆隔震支座FPSII-2000-400-4.11厂家
橡胶支座安装施工关键要点连接与固定:当支座板与墩台采用焊接连接时,需采用对称、间断焊接的方法,将下支座板与墩台上的预埋钢板牢固焊接,焊接过程中必须采取有效措施,防止烧伤支座本体及周边混凝土结构。若涉及连接螺栓安装,需将定位用连接螺栓穿过隔震橡胶支座连接钢板的螺栓孔,准确扭入套筒内并拧紧,确保连接稳固。
包括减震支座、抗震支座、隔震支座和拉力支座等。其中,隔震橡胶支座(含天然橡胶支座、铅芯橡胶支座及高阻尼橡胶支座)能有效降低结构所承受的地震作用,被视为实现建筑隔震实用化的关键技术。
摩擦摆隔震支座FPSII-10000-400-4.11生产厂家
板式橡胶支座是靠橡胶的剪切变形来适应建筑板式橡胶支座是靠橡胶的剪切变形来适应建筑伸缩位移的需要,因此它应用在有较大伸缩位移要求的建筑上就有一定困难,一般只适用于中小跨径的简支梁桥,因此有必要在普通板式橡胶支座的表面粘贴一层聚四氟乙烯板,制成四氟板式橡胶支座,作为建筑活动支座使用,同时也可以用作顶推法施工建筑的滑块。
在现代建筑抗震领域,隔震技术凭借其独特的力学机制,为建筑结构在地震中的安全提供了可靠保障。其核心思路是在建筑基础与上部结构之间巧妙设置柔性隔震层,这一设计宛如为建筑安装了一个强大的 “缓冲垫”。其中,橡胶支座是隔震层的关键部件,通过自身的弹性变形来延长结构的自振周期。通常情况下,普通建筑结构的自振周期较短,而设置橡胶支座后,结构自振周期可延长至 2 - 3 秒。这样一来,地震能量在传递过程中,由于周期的改变,难以与建筑结构产生共振,从而有效减少了地震能量向上部结构的传递 。

隔震橡胶支座技术原理及主要力学性能建筑隔震橡胶支座橡胶支座,将上部建筑结构与下部地基结构隔离,由于建筑隔震橡胶支座橡胶支座中的隔震橡胶支座橡胶支座刚度小,柔性强,当地震发生时防倾覆隔震橡胶支座层将发挥隔的作用,代替上部结构承受地震强烈的位移动力,以此来隔离或耗散地震的能量,避免或减少地震能量向上部结构传输,此时,由于隔震橡胶支座橡胶支座的作用,延长结构的周期并给予较大的阻尼,使上部建筑结构的反应相当于不隔震橡胶支座情况下的1/4~1/8,近似平动,从而隔离了地震的作用。
1981年铁道科学研究院曾对在安徽固镇铁路桥上使用了10年之后取下的支座进行力学性能测定,实测支座〔150MM300MM28MM)抗压弹性模量E=527MPA,与铁路标准值670MPA相比抗压模量还略有下降;剪切模量实测为1.315MPA比理论值1.1MPA增加约19.55%。
