盆式与球型橡胶支座:适用于对位移和转动精度要求更高的场景,能满足复杂受力状态下的工程需求。
施工温度选择对支座安装质量至关重要,温度过高或过低均会导致梁体伸缩量异常,进而引发支座单侧半脱空等问题,需结合工程区域气候特征确定合理安装温度区间。
FPS隔震支座源头工厂
水平变形能力:铅芯能够很好地追随支座变形,使得LRB500支座在水平方向上具有较好的性能稳定性。
隔震支座是建筑上、下部结构的连接点,其作用是将上部结构的荷载(包括恒载和活载)顺适、安伞地传递到建筑墩台上,同时要保证上部结构在支座处能自由变形(转动或移动),以便使结构的实际受力情况与计算简图相符合。因此,对建筑支座要合理设置,正确安装,并经常注意保养维修,如有损坏要进行修补加固或更换。隔震支座按其作用分固定支座和活动支庵两类。固定支摩用来同定建筑结构在墩台上的位置,它只能转动而不能移。一般设置在梁体固定位置;活动支座则可保证在温度变化、混凝土收缩和荷载作用下结构能自由转动和自由移动。
FPS隔震支座源头工厂
四氟乙烯滑板支座:在普通支座基础上增设聚四氟乙烯板,摩擦系数极低(可低至0.15%),能够有效适应大位移需求。其具备构造简单、价格低廉、易于更换、建筑高度低等特点,广泛应用于中小型公路桥梁。
通常在布置支座时需要考虑以下的基本原则:上部结构是空间结构时,支座应能同时适应建筑顺桥向(X方向)和横桥向(Y方向)的变形;支座必须能可靠的传递垂直和水平反力;支座应使由于梁体变形所产生的纵向位移、横向位移和纵、恒向转角应尽可能不受约束;铁路建筑通常必须在每联梁体上设置一个固定支座;当建筑位于坡道上,固定支座一般应设在下坡方向的桥台上;当建筑位于平坡上,固定支座宜设在主要行车方向的前端桥台上;支座各部应保持完整、清洁。
摩擦摆隔震支座FPSII-9000-350-3.81源头工厂
性能设计方法创新基于能量平衡理念,在不改变桥墩原有刚度控制设计理念的前提下,通过优化减隔震支座参数,提出一种无需迭代的性能设计方法(EQUVILANT ENERGY BASED DESIGN PROCEDURE,EEDP),可精准实现建筑预期性能目标,提升设计效率与可靠性。
变形协调能力强:通过橡胶层的弹性变形与剪切变形,可适应上部结构的转动及温度伸缩变形,增强梁与桥墩的水平向联结,使活动墩共同受力,减小固定墩承受的荷载,提升结构整体抗震性能。
摩擦摆隔震支座FPSII-3000-350-3.81源头工厂
本工程用到的橡胶隔震支座的数量较多,使用部位为、建筑物地圈梁与6条形基础之间。橡胶隔震支座在本工程的构造由三部分组成:下支墩、橡胶隔震支座、上支墩。橡胶支座通过预埋板用高强螺栓等连接件与上下支墩相连。主楼内隔震层层高为650M,隔震支座的主要型号有:LRB600-120、(16个)NRB600、(58个)P400(44个)
支座参数对工程性能的影响:以高架桥为例,板式橡胶支座水平刚度的差异会影响结构功率流。当水平刚度分别取 1.705×10?KN/M、2.273×10?KN/M、2.728×10?KN/M 等数值时,与采用普通活动支座的工况相比,结构动力响应呈现显著差异,需结合工程需求合理选取支座参数。

摩擦摆支座具有隔震和减震功能,其应用领域较为广泛,主要包括以下方面:
天然橡胶支座(LNR)结构相对简单,由纯橡胶层构成,具有较低的水平刚度和较高的竖向刚度。在阻尼性能方面,其阻尼比通常在 5% - 8% 之间,这使得它在一定程度上能够消耗地震能量。由于其造价相对较低,适用于 7 度以下设防区的一般性建筑,这些建筑对地震防护的要求相对较低,天然橡胶支座能够在满足基本抗震需求的同时,有效控制建设成本 。
