2011 年日本 9.0 级地震中,仙台、福岛震中区的众多隔震建筑(包括超过 100 米的高层隔震建筑)均完好无损,室内设施和物品未发生移位,充分验证了隔震技术的可靠性。
当板式橡胶支座因温度变化等因素在支座处产生纵向水平位移,支座橡胶层;不计制动力,应满足:TE≥2△L;计制动力,应满足:TE≥1.43△L;当板式橡胶支座在横桥向平行于墩台帽横坡或盖梁横披设计时,支座橡胶层;不计制动力,应满足:TE≥2(△L2+△T;计制动力,应满足:TE≥1.43(△L2+△T。
FPS摩擦摆支座源头工厂
橡胶支座通用安装质量控制:支座安装后的质量核查需覆盖以下要点:支座安装位置准确性、型式与方向正确性、临时固定设施拆除完整性、润滑材料使用合规性等。发现问题需及时调整处理,确保支座满足结构受力要求,保障工程整体安全性与耐久性。
常见 “支座不能自由滑动” 的原因是安装连接板未拆除,处理方案:对于螺栓连接的连接板:采用扭矩扳手按对称顺序拆除螺栓(避免支座受力失衡),拆除后清理连接板残留杂物;对于焊接连接板:采用氧乙炔焰切割(配备水冷装置,避免高温损伤橡胶 / 四氟板),切割后打磨焊渣并补刷防锈漆(环氧富锌底漆 + 聚氨酯面漆,总厚度≥240μm)。
摩擦摆式减隔震支座源头工厂
由于D、F型建筑伸缩缝整条采用氯丁或三元乙丙橡胶制作,具有良好的耐老化、耐曲挠性能。由于FAX、FAY、FBX三个力汇交于A点,对A点写取矩方程可求出待求力FBY。由于板式橡胶支座具有水平剪切的各向同性,能良好传递上部构造多的变形。由于板式支座本身具有足够的竖向刚度,可以满足较大垂直荷载,并具有良好的弹性以适应梁端的转动。由于从受力5-2A上能够求出FBY,所以可以从受力5-2C中求出FBX。由于各省之间情况各异,经济增长点各不相同,车辆荷载出入较大。由于化学注浆材料具有良好的与混凝土粘接性能,待其形成固体后具有良好的弹性和遇水膨胀性。由于检测设备投资大,检测难度大,一般单位无能力承担。
一般情况下可将抵抗外扭矩的抗扭支承布置在两侧桥台上(或一侧),为了满足全桥伸缩缝的构造要求,希望其变形方向沿着切线方向移动,为此在构造上必须采取一定的限制措施,此时,可在1个桥台上布置固定橡胶支座,其余墩台上的活动橡胶支座的移动方向为左右相邻橡胶支座的连线方向建筑隔震设计的基本原则建筑隔震设计可以加强建筑抗震性能,但在进行隔震设计时应当遵守以下几个基本原则,只有认真遵守这些原则,才能有效地、切实地提高建筑抗震效能。
摩擦摆隔震支座FPSII-9000-300-3.48
清洁要求:安装前,必须彻底清除支座钢板和相关滑动面(特别是不锈钢板与聚四氟乙烯板的相对滑动面)上的油污、尘土。建议使用丙酮或酒精进行清洁,确保无任何防锈油或杂质残留。
支座承载力需根据建筑恒载、活载的支点反力之和及墩台支座数目综合计算。设计时需遵循以下原则:
摩擦摆隔震支座FPSII-8000-300-3.48源头工厂
耐久性高:球面滑动面采用高耐磨材料制成,具有较长的使用寿命和良好的耐久性。
通常来说桥面震动属于正常现象,震动在所有的多跨桥上都存在,属于正常的缓冲力。通过不断调整支座的等效刚度来满足偏心率。通过大量试验,解决了φ1000橡胶隔震支座的胶料、粘合剂的佳配方设计。通过理论计算和实际生产经验确定了模具的相关设计参数。通过球形板和球面四氟板之间的滑动来满足支座转角的需要。通过试验和理论相结合的方法确定了φ1000橡胶隔震支座的力学性能指标。通过以上判定方法,可以对各种在使用当中的建筑支座性能进行检查,从而可以确保支座的正常使用。通过在山西、福建、南京、广东、湖北、河南、辽宁、重庆等地的高速公路(建筑)收费站的车辆荷载调查。通过这几年的施工,我们总结出了一套适用的支座更换处置方法及控制技术,该技术有着广阔的应用前景。同步顶升高度为可拆除既有支座和安装新支座所需的工作空间,约为10~15MM。同时,公路建筑支座的厚度要能适应梁体转角的需要。

摩擦系数影响:静、动摩擦系数的差对隔震性能影响较大,由于动摩擦系数比静摩擦系数小,滑动一旦开始,速度不断增加,当摩擦阻力减小较大时,可能会出现类似于负刚度现象,这不仅会造成滑移量大,有时甚至可能出现滑移失稳,因此需匹配合适的限位复位机构。
建筑隔震技术是提升工程抗震安全性的核心手段,叠层橡胶隔震支座作为核心构件,其设计模式、施工验收、性能管控直接影响隔震效果。本文结合工程实践与技术研究,系统梳理隔震层设计模式、支座施工验收要求、常见问题及技术实效,为隔震工程应用提供参考。
